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On the Interfacial Behavior about the Shield Region1

A. Mejı́a2,3 and H. Segura2,3

The shield region is a singular range of the global phase diagram (GPD),
where equations of state based on mean-field theories predict a quadruple
point (QP) for fluid binary mixtures. The QP in question is characterized by
three immiscible liquids and a vapor in equilibrium. No experimental system
has been found exhibiting such an equilibrium behavior. In this theoretical
study the interfacial and wetting behavior of the phases that coexist at the
QP by applying the gradient theory to the van der Waals equation of state
is described.
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1. INTRODUCTION

In 1968, van Konynenburg and Scott [1,2] published a seminal work
regarding the capability of the van der Waals equation of state (vdW-EOS)
to predict fluid phase equilibrium diagrams of binary mixtures. As a result
it was found that the vdW model exhibits five main types, or classes,
that differ essentially in the geometry and connectivity of the predicted
critical lines. Mixtures that are classified as the same type exhibit phase
diagrams of equivalent shapes and, consequently, they display similar equi-
librium behavior over the whole subcritical range. A remarkable contribu-
tion of the work of van Konynenburg and Scott was the development of a
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map, that they called “Master Diagram” (or global phase diagram, GPD),
where the prediction of each type was bounded in terms of the param-
eters of the vdW-EOS. Since the work of van Konynenburg and Scott,
the GPD approach has been further developed, becoming a powerful tool
of analysis both in theoretical and applied thermodynamics. A reduced
set of GPDs have been calculated for vdW-type and theoretically based
EOSs [3–11]. These studies, restricted mainly to mixtures of molecules of
equal size, focus on finding all conceivable phase equilibrium behavior and
result in the conclusion that all EOSs display similar GPDs. One of the
most interesting phenomena found is the ability of simple models to pre-
dict four-phase equilibria inside the shield region [5,12] and the less known
sword region [13].

In order to extend the systematic approach of the GPD to the case
of interfacial fluids, several authors [13–24] have characterized some of the
regions in terms of the thermal dependence of interface tensions and in
terms of wetting transitions. From these studies, devoted mainly to two- or
three-phase equilibrium, we have a better understanding on how the topo-
logical type affects the interfacial behavior.

The scope of this work is to fill some gaps regarding the interfa-
cial behavior of mixtures that belong to the shield region (Sh-r) [12]. As
pointed out before, the Sh-r is characterized by a quadruple point (QP)
of equilibrium where three immiscible liquids and a gas coexist. Although
no experimental binary mixture has been found exhibiting a QP of fluid
phases, the results reported by Brunner [25] for water + n-alkanes mix-
tures (specifically when 26 <n< 28, where an unusual tricritical transition
is observed) show the trend of connectivity of the three-phase and critical
lines observed in mixtures that belong to the Sh-r. In addition, a QP of
fluid phases is itself interesting, since it is possible to expect a condition
of high interfacial activity. In our analysis we applied the square gradient
theory to vdW binary mixtures of molecules of equal size [14].

2. THEORY

2.1. Shield Region

Figure 1 depicts the Sh-r predicted by the vdW-EOS considering mol-
ecules of equal size. The coordinates of this figure are related to the
parameters of the EOS according to the following definitions [1,2]:
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Fig. 1. Shield region for molecules of equal size, as calculated from
the vdW-EOS. α, β, γ immiscible liquids, G gas phase. (—) Tricritical
line, (•••) Shield boundary, (-•-) CPSP, (– – –) III-A-H boundary.

In Eq. (1), ai is the cohesion parameter and bi is the covolume that,
for pure vdW fluids, depend on the critical temperature Tc and critical
pressure Pc according to

ai = 27
64

(RTci )
2

Pci
; bi = 1

8
RTci

Pci
(2)

where R is the gas constant. In addition, the cross parameters aij , bij of
Eq. (1) are given by

a12 =√
a1a2(1−k12); b12 = b1 +b2

2
(3)

In Eq. (3), k12 is the interaction parameter that accounts for the magni-
tude and sign of the deviation of the mixture from ideal behavior.

As shown in Fig. 1, the Sh-r for mixtures of molecules of equal size
(ξ = 0) is an almost triangular symmetric region where three tricritical
boundaries, a critical-pressure step point (CPSP) boundary, and a limiting
azeotropic–heteroazeotropic boundary (III-A-H line) converge. A CPSP
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transition bounds the behavior of multiple pressure stationary points along
a critical line in a P –T projection. In addition, the III-A-H line masks
the azeotropic behavior inside a range of immiscibility. Finally, a tricriti-
cal transition breaks the continuity of a critical line in a critical end point
(CEP). Due to all these transitional mechanisms, the systems that may be
found inside the Sh-r are hybrids of types II and III that may present sta-
tionary pressure points and/or azeotropic behavior.

Figure 2a depicts a particular P –T projection that may be found
inside the Sh-r [ζ =0.04, λ=0.46]. Due to the previously mentioned tran-
sitional mechanisms, the general trend and connectivity of the main criti-
cal lines may vary as the ζ , λ coordinates change. However, every system
drawn from the region in question exhibits QPs, as shown in Fig. 2, with
the following similarities:

• the QP appears below the critical temperature of the constituents
of the mixture, connecting a low-temperature three-phase line with
three high-temperature three-phase lines;

• the pressure of the QP is larger than the vapor pressure of the pure
components; and

• at the QP, three phases have liquid-type densities and the remaining
phase has a gas-type density.

Figures 2c, d depict the phase diagrams that appear in the vicinity of the
QP. It should be pointed out that the shapes of these diagrams are charac-
teristic for every mixture inside the Sh-r. In the referenced figures it is pos-
sible to recognize a liquid phase α, rich in component 2, and a second liq-
uid phase β, rich in component 1. The concentrations of the gas phase G

are bounded by the concentrations of α and β. In addition, starting from
the temperature of the QP, a third liquid phase γ induces a bifurcation
of the low-temperature three-phase line. The liquid γ is characterized by
mid-range concentrations and, depending on the coordinates of the GPD,
it is able to form azeotropes.

The boundaries of the Sh-r may be calculated considering that two
phases of the QP collapse in an ordinary critical point (the phases that
become critical are indicated in Fig. 1). In addition, every vertex of the
Sh-r corresponds to a condition where three phases of the QP collapse in
a tricritical point.

In this work, we analyze the interfacial properties of the set of
three-phase lines for a system with fixed ζ , λ coordinates. Then we con-
sider the interfacial properties of the QP for single displacements in ζ and
in λ, in order to analyze the influence of the components of the mixture
and the synergy between components, respectively.
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Fig. 2. (a) Pressure–temperature projection for a binary mixture at ζ = 0.0404, λ =
0.4550, ξ = 0. (—) critical line, (• • •) vapor-pressure line, (–•–) three-phase line, (©)
QP, (•) CEPs; (b) connectivity details around the QP in Fig. 2a; (c) equilibrium diagram
before the QP temperature, (©•••©) three-phase line; (d) equilibrium diagram for the
QP temperature, (© • • • ©) four-phase line; and (e) equilibrium diagram after the QP
temperature, (©•••©) three-phase lines: �βγG, �αγG, �αβγ .
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2.2. Square Gradient Theory for Planar Interfaces

According to the gradient theory (GT) the interfacial tension (σ )
between two bulk phases at equilibrium (α, β) is given by [23]

σ =
√

2

ρ
β
s∫

ρα
s
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In this expression, ρi,j are the concentrations of species i and j and ρs is
a reference concentration (for component i or j ) whose behavior should
be monotonically defined along the integral path. P 0 is the bulk equilib-
rium pressure, nc stands for the number of components, a0 is the den-
sity of the Helmholtz energy of the homogeneous system, and µ0

i is the
chemical potential of component i at equilibrium. Both a0 and µ0

i can
be determined directly from any EOS [24], and cij is the cross influence
parameter that is considered constant. In the present work, cij is calcu-
lated from the following expressions [23,24]:

cii
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2/3
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=
(

3
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)2/3

; cij =√
ciicjj (5)

where Nav is Avogadro’s number. In Eq. (4), ρi and ρj are related by a set
of partial differential equations (PDE) that describe the equilibrium con-
dition for the interfacial fluid. However, Eq. (5) can be used to simplify
the PDE problem to the following set of algebraic equations [23]:

√
css

[
µk(ρ)−µ0

k

]
=√

ckk

[
µs(ρ)−µ0

s

]
k =1,2, . . . , s−1, s+1, . . . , nc

(6)

Equation (6) allows quantification of the population of species at the
interface, together with the surface activity which is characterized by the
condition, dρi/dρj = 0 [23]. Physically significant solutions of Eq. (6)
should be bounded by the hard-core limit of the EOS (in this case the
covolume b) since at that limit, µi → −∞. The numerical procedure that
allows calculation of σ from Eqs. (4) and (6) was described in detail pre-
viously [24].

2.3. Wetting Transitions at Fluid Interfaces

π phases in equilibrium may be contacted by a maximum of [1/2(π −
1)π ] interfaces, each one of which is characterized by a specific value of σ .
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For the case of three phases in equilibrium (α, β, γ ), the interfacial ten-
sions (σαβ , σαγ , σβγ ) are interrelated by [14]

σαβ <σαγ +σβγ partial wetting or Neumman inequality (7a)

σαβ =σαγ +σβγ total wetting or Antonow rule (7b)

The wetting condition is invariant to the cyclic permutation of the sub-
indices α, β, γ . As written, Eqs. (7) describe the partial and total wet-
ting of the γ phase on the αβ interface. The transition from partial to
total wetting (or vice versa) is called the wetting transition [14]. For the
case of π >3, no general rule exists to establish the mathematical condi-
tion of a wetting transition. Intuitively, it is possible to infer that a basic
condition for a wetting transition is that, at the least, every set of (π −1)
phases should be at the wetting transition. Following this argument, we
can expect that a wetting transition at the QP (π = 4) requires a wetting
transition condition for every set of three phases that we could select from
the QP. Following such an hypothesis, the wetting transitions of a QP may
be analyzed using Eqs. (7).

3. RESULTS AND DISCUSSION

3.1. Interface Behavior at Fixed ζ ,λ Coordinates

The objective of this section is to analyze the ρ–ρ and σ–T projec-
tions for the QP of a specific mixture inside the Sh-r, and to illustrate
the connectivity of its interfacial tensions. The GPD coordinates, criti-
cal properties, and interaction parameter of the mixture are indicated in
Table I. Figure 2 illustrates the critical P –T projection and the phase dia-
grams for the system in question. The thermal evolution of the ρ–ρ pro-
jections for each three-phase line that meets the QP is shown in Fig. 3.
From these figures we can conclude that the Sh-r exhibits dominant sur-
face activity, as follows from the stationary condition dρi/dρj = 0. Inspec-
tion of Fig. 3 reveals that the ρ–ρ projections of every three-phase line
converge to a single trajectory at the QP, whose ρ–ρ projection is shown
in Fig. 4. Figures 5 and 6 show the σ–T projections for the complete set

Table I. GDP Coordinates, Critical Properties, and Interaction
Parameter for the Mixture in Fig. 2

ζ λ Tc2/Tc1 Pc2/Pc1 k12

0.0404 0.4550 1.084109 1.084109 0.454556
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Fig. 3. Thermal evolution of interfacial concentrations for three-phase lines. (•) α

bulk phase, (©) β bulk phase, (�) γ bulk phase, (�) G bulk phase.

of three-phase lines that connect the QP. The interfacial behavior of the
mixture under analysis is summarized in Tables II and III. From these
results, we can conclude that the interfacial tensions along the three-phase
lines exhibit the usual trend that can be expected for heteroazeotropes at
subcritical and critical conditions, as we described previously [24].

Focusing our attention on the QP, we can observe that the interfacial
tensions of the low temperature three-phase line connect the interfacial
tensions of the high temperature three-phase lines for the αβ, αG, and
βG interfaces. It is clear also that the temperature slope of these interfa-
cial tensions change at the QP. In addition, due to the generation of the
γ phase, additional interfacial tensions related to the γ interface appear
at T �TQP. In fact the QP is characterized by six interfacial tensions of
different orders of magnitude.
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3.2. Interface Behavior for the QP along the λ Coordinate

The objective of this section is to describe the impact of the λ coor-
dinate on the interface behavior. A constant ζ value implies that the criti-
cal properties of a mixture do not vary as λ changes. Consequently, from
Eqs. (1), it follows that single λ displacements are related to variations of
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k12. Consequently, this analysis reflects the influence of the synergy of the
mixture on the interfacial properties of the QP.

Figure 7 depicts the evolution of the ρ–ρ projection as λ increases.
Minor variations could be observed, allowing the deduction that the sur-
face activity of the interface does not vary significantly with λ.

Figure 8 illustrates the evolution of the six interfacial tensions of the
QP. We can observe that, as λ increases, four interfacial tensions increase
(σαG, σαγ , σαβ , σβγ ) and two decrease (σβG, σγG). In addition, these fig-
ures show that the interfacial behavior is in agreement with the critical col-
lapse of the γG and the αγ phases at the upper and lower limits of the
Sh-r (see Fig. 1). General results have been summarized in Table IV.

Similar results can be found for every ζ ∈ (0;0.0507]. As a conse-
quence of the symmetry of the GPD for molecules of equal size, the range
ζ ∈ [−0.0507;0) exhibits the same patterns described before. Finally, ana-
lyzing the σ(λ) curves and considering Eqs. (7), we can conclude that,
for the analyzed ranges, no wetting transitions are observed for the four
phases of the QP.
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Table II. Interfacial Tension Behavior along the Three-Phase Lines of Fig. 2

Temperature range Phase equilibrium condition Interfacial tension behavior

αβGE-line
T <TQP Subcritical equilibrium σαG �=σβG �=σαβ �=0

αG, βG σ decreases as T increases
αβ σ exhibits stationary points in T

T =TQP Subcritical equilibrium σαG �=σβG �=σαβ �=0
αG,βG,αβ

αβγ E-line
T =TQP Subcritical equilibrium σαβ �=σαγ �=σβγ �=0

αβ,αγ,βγ

TQP <T <TUCEP1 Subcritical equilibrium σαβ �=σαγ �=σβγ �=0
αγ , βγ σ decreases as T increases
αβ σ exhibits stationary points in T

T =TUCEP1 Subcritical equilibrium σαβ �=σαγ �=0
αβ, αγ

Critical equilibrium σβγ =0
βγ

αγ GE-line
T =TQP Subcritical equilibrium σαγ �=σαG

�=σγG �=0
αγ , αG, γG

TQP <T <TUCEP2 Subcritical equilibrium σαγ �=σαG �=σγG �=0
αG, γG σ increases as T increases
αγ σ decreases as T increases

T =TUCEP2 Subcritical equilibrium σαG �=σγG �=0
αG,γG

Critical equilibrium σαγ =0
αγ

βγ GE-line
T =TQP Subcritical equilibrium σγβ �=σγG �=σβG �=0

γβ, γG,βG

TQP <T <TUCEP3 Subcritical equilibrium σαG �=σβG �=σαβ �=0
γβ, γG, βG σ decreases as T increases

T =TUCEP3 Subcritical equilibrium σβG =σγG
�=0

βG=γG

Critical equilibrium σβγ =0
βγ

3.3. Interface Behavior for the QP along the ζ Coordinate

The objective of this section is to analyze the ρ–ρ and σ–ζ projec-
tions of the QP as ζ varies with constant λ. Such an incursion reflects
the influence of the critical properties of the constituents of a mixture.
Figure 9 shows the ρ–ρ projections for the different values that ζ may
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Table III. Wetting Behavior along the Three-Phase Lines of Fig. 2

Temperature range Wetting behavior Wetting regime

αβGE-line
T ≤TQP σαβ < σαG + σβG No wetting transition

σαG < σαβ + σβG

σβG < σαβ + σαG

αβγ GE-line
TQ < T < TUCEP1 σαγ < σαβ + σγβ No wetting transition

σγβ < σαγ + σαβ

TQP < T < Tw σαβ < σαγ + σγβ No wetting transition
T =Tw σαβ =σαγ + σγβ Wetting transition at Tw =0.7961
Tw < T < TUCEP1 σαβ >σαγ + σγβ No wetting transition

αγ GE-line
TQP < T < TUCEP2 σαγ < σαG + σγG No wetting transition

σγG < σαγ + σαG

TQP < T < Tw σαG < σαγ + σγG No wetting transition
T =Tw σαG = σαγ + σγG Wetting transition at Tw =0.8007
Tw < T < TUCEP2 σαG > σαγ + σγG No wetting transition

βγ GE-line
TQP < T < TUCEP3 σαβ < σαG + σβG No wetting transition

σαG < σαβ + σβG

σβG < σαβ + σαG

acquire inside the Sh-r. From this figure it is possible to conclude that
variations on the ζ coordinate strongly affect the surface activity. Such a
behavior follows from the fact that ζ variations change the cij values and,
therefore, the interfacial tensions of the pure components.

In Fig. 9 we can also see that, at ζ =0, the solution of Eqs. (6) tends
to the limit µi →−∞ (such a condition appears along the asymptotic seg-
ment BC). In addition, the ρ–ρ projection becomes a nondifferentiable
function at point A, where the mixture is composed of equivalent mole-
cules with large synergy. As may be deduced from Eq. (4), the nondiffer-
entiable point corresponds to a condition that affects the prediction of σ .
It is clear that point A implies a shape transition point (STp) on density
profiles and yields a singularity for the dρ1/dρ2 derivative.

Figure 10 depicts the dependence of σ for the whole range of ζ . As
was discussed previously for Figs. 4 and 8, the QP is characterized again
by high and low interface tensions. In addition, we can observe that, at the
STp, the subset of interfacial tensions that do not include the γ –G inter-
face are not continuous on ζ .
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It should be pointed out that the STp coincides with the symmetric
tricritical line observed in Fig. 1; however, the STp is not necessarily asso-
ciated with a tricritical transition. In fact, Fig. 11a illustrates the Sh-r
for molecules of different sizes (ξ = −0.23). From the figure in question,
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we can observe an STp line on the GPD (line CD), that goes from the
lower tricritical vertex C to a nontricritical upper point D of the Sh-r.
Figure 11b shows the pertinent QP σ values that may be calculated for
the whole ζ range at λ= 0.4770. As in the case of mixtures of molecules
of equal size, every interfacial tension not related to the γ –G interface
becomes evidently disconnected at the STp, yielding thus an undefined
wetting behavior.

4. CONCLUDING REMARKS

In this work we have analyzed interface properties and wetting tran-
sitions for mixtures that belong to the shield region. Special attention has
been given to the properties of the QP, which is the common character-
istic of the mixtures under analysis. Calculations have been based on the
GT applied to the vdW-EOS. The main advantage of this approach is
that calculations are based on the same EOS, yielding thus a coherent
theory for relating equilibrium features with interface properties. Accord-
ing to results, the shield region is characterized by a shape transition
point of density profiles, around which similar ρ–ρ projections and strong
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Fig. 10. Dependence of interfacial tensions on ζ(λ = 0.4550, ξ =
0). (—) Sh-r limits, (—) shape transition line, (—) σαG, (- - -) σαβ ,
(•••) σαγ , (–•–) σβγ , (–••–) σβG, (— —) σγG.

surface activity are predicted. The QPs of the shield region are char-
acterized by six interfacial tensions of different orders of magnitude,
whose continuity on ζ becomes undefined at the density profile shape
Ptransition point. The discontinuity of interfacial tensions implies also
an undefined local wetting regime. In addition, ρ–ρ projections are very
sensitive to changes in the ζ coordinate, due to variation of the influ-
ence parameter cij , and less sensitive to the λ coordinate. It follows then
that the interfacial properties of the shield region exhibit a strong depen-
dence on the components of the mixture and a weaker dependence on its
synergy.

Inside the range of conditions analyzed in this work, no wetting tran-
sition involves the four phases of the QP.
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Fig. 11. (a) Shield region for molecules of different size
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dence of interfacial tensions on ζ (λ = 0.4770, ξ = −0.2309).
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